
Topological navigation of simulated robots using
occupancy grid

Richárd Szabó

Department of General Computer Science
Eötvös Loránd University
1117, Pázmány P. s. 1/D.

Budapest, Hungary

Department of History and Philosophy of Science
Eötvös Loránd University

1117, Pázmány P. s. 1.
Budapest, Hungary

Abstract

Formerly I presented a metric navigation method in the Webots mobile robot
simulator. The navigating Khepera-like robot builds an occupancy grid of the envi-
ronment and explores the square-shaped room around with a value iteration algo-
rithm. Now I created a topological navigation procedure based on the occupancy
grid process. The extension by a skeletonization algorithm results a graph of im-
portant places and the connecting routes among them. I also show the significant
time profit gained during the process.

Keywords: robot simulation, occupancy grid, metric/topological navigation

1 Introduction

Mobile robotics and robot navigation is a growing area of scientific research. Without
navigation the creation of self-propelled, household machines, guard robots, or planet
surveyors is beyond imagination.

Robot simulators are useful designing and analizing tools of the navigation research
area since learning can be much more effective inside the computer than in the real
world. After a careful testing the real robot is “only” necessary for fine tuning ([1]).

For this reason I employed the Webots robot simulator ([2]). This tool is capable
of imitating almost any type of mobile robots including wheeled, legged, and flying
models. It is also important that robot controlling softwares can be written in several
high level computer languages like C/C++ or Java.

In this paper I present a method for building topological navigation graph on the top
of an occupancy grid in the Webots simulator. First of all I show in brief the creation of

1



an occupancy grid and the environment exploration with value iteration. Then I focus
on the necessary steps of the composition of the graph and the environment exploration
utilizing the evolved graph.

This project is part of my Ph.D. research with the main aim of the investigation of
mobile robot navigation. The primary tool for the experiments is the Webots mobile
robot simulator. After I was the runner up of the 1st Artificial Life Creators Contest
organized by Cyberbotics Ltd. in 1999, I won the second contest in 2000 and obtained
the simulator license as the first prize. Details of the competitions are discussed in
([1]).

2 Previous work

My former goal was to create a metric navigation module for a modified Khepera robot
in the Webots simulation environment, that is to say I focus on metric spatial properties
of objects like distances, and coordinates. The developed robot has to build a cognitive
map — “a view from above” — of a square-shaped room in the size of a few square
meters while it visits every reachable location ([3]). Figure 1, Figure 2, Figure 3, and
Figure 4 show some typical experimental area.

Figure 1: A maze in Webots Figure 2: An office-like room

The selected Khepera robot has a cylindrical shape of 55 mm in diameter and 3 cm
in height. In this experiment I changed the original 8 infra-red distance sensors to 24
sonars with a sensing range of 15 cm to facilitate the perception of the environment.

The adopted method of metric navigation is based on the occupancy grid model
pioneered by Moravec and Elfes ([4], [5]). This general structure in two dimension
manages a tesselation of the plane in cells. Each cell of the occupancy grid contains
a probability value which is an estimation that the represented position is occupied by
some object.

After the investigation of other probabilistic navigation possibilities like Kalman-
filter, and expectation maximization ([6]) I have chosen this grid technique because it
is relatively simple to implement and because of its iterative nature.

2



Figure 3: Radial maze Figure 4: AAAI contest maze

The important steps of the map building, in accordance with Thrun’s work ([7]),
are the following:

• sensor interpretation

• integration over time

• pose estimation

• global grid building

• exploration

2.1 Occupancy grid creation

The sensor interpretation is the first phase in the creation of the occupancy grid based
navigation. During this process the 24 sonar scalar values are converted to occupancy
values around the robot with the radius of sonar sensing range. The conditional proba-
bilities of the local grid cells can be determined either by an artifical neural network or
by predefined conversion function. For the sake of simplicity the latter method is used:
probabilities are highat the point of a measurement, and are low closer to the robot.

Since different sonar measurements give different values for a grid cell because of
noise and changing viewpoint, it is important to integrate the conditional probabilites
of distinct moments. Using the assumption of the indepence of measurements – that
generally not holds – and the Bayes theorem, incremental calculation of occupancy
grid values is possible, sonar scans can be “concatenated” to previous experiences.

After the local occupancy grid is created around the robot its values have to be
merged into the global grid. Beyond the coordinate transformation between the grids
we need an exact global position where the local grid can be integrated. Estimation
of robot position is not an immanent property of the occupancy grid technique so an
accepted method is to use a position estimation method like odometry – continuous
calculation of changes of the robot pose – combined with correction of odometric errors

3



accumulated by sensor and motor noise ([8]). Since my main focus is the occupancy
grid the simulator provides the position of the robot to step across this problem.

Figure 5 shows the occupancy grid of a maze during the process of the exploration.

Figure 5: Occupancy grid of a maze

2.2 Iterative evaluation

After the robot is ready to create a map of its environment, a driving force is needed to
urge the robot to explore all the reachable places, otherwise it would wander randomly.
For this reason a variant of value iteration is implemented. This technique is well-
known in the domain of reinforcement learning ([9]).

The selected algorithm helps to find the minimum cost-path to unexplored regions
of the occupancy grid. A cost matrix is calculated iteratively and after convergence
for every occupancy grid cell the cost of travelling to an unexplored grid cell from the
actual cell is given (Figure 6, Figure 7).

Exploration direction is then a resultant of the cost matrix, the actual direction of
the robot, and an obstacle-avoidance behaviour.

3 Building a topological graph from occupancy grid

Eploration using value iteration is a very time-consuming task. Values of the cells of
the cost matrix are calculated by a process which scans through the whole matrix many
times. Furthermore the next exploration direction is based on this gradient map and it
does not necessarily take into account the constraint of the robot dynamism, sometimes
resulting a fairly clumsy movement.

Accordingly it seems a natural improvement to replace the value iteration mod-
ule with a topological graph. The topological graph emphasizes the links between
landmarks, the possibility to move from one place to another. Graph edges repre-
sent traversable corridors of the environment and graph nodes are the crossings or end

4



Figure 6: Cost matrix of the open area Figure 7: Cost matrix of the maze

points. Navigation using the graph is much faster since its size is some order of magni-
tude smaller than of the cost matrix. Chapter 2 of my book ([1]) compares metric and
topological navigation in detail.

There are quite many different ways of creating a navigation graph using a met-
ric map. Skeletonization, calculating Voronoi-diagrams, matching opposite contours,
sparse pixel approaches are among the possibilities ([7],[10]). In any case the occu-
pancy grid can be viewed as a two-dimensional greyscale image of the environment,
hence digital image processing methods are valid approaches ([5]).

Since I selected skeletonization, steps of the creation of topological navigation us-
ing the occupancy grid are the following:

• skeletonization

• chaining the skeleton to edges

• graph optimization

• navigation

3.1 Skeletonization

I decided to produce the skeleton of the explored and unoccupied region of the envi-
ronment. At the end of the process skeleton points are those places where the robot is
hopefully not blocked by any obstacles.

For this reason I utilized medial axis transform (MAT) ([11]). An interior point of
the shape belongs to the medial axis if this point lies at the same distance from two
or more nearest contour points. Unfortunately one drawback of MAT appeared during
my tests: medial axis of discrete objects and shapes – like the discrete occupancy grid

5



to be projected – may be disconnected. This deficiency is not acceptable in our case
since the resulting skeleton has to contain all connected routes among important places
of the environment.

As a second attempt instead of using medial axis transform I applied a thinning
algorithm to “peel the union”, in other words I iteratively shrinked the object to its
one pixel wide skeleton ([12]). During this process the border pixels are deleted suc-
cessively while topology and morphology of the object is preserved, that is to say no
pixels are deleted at the end of a line or at the connection of two regions.

The thinning algorithm works as it is described in Algorithm 1. Figure 8 shows the
labeling of pixels aroundP1.

Figure 8: Labeling of points in thinning

Algorithm 1 The thinning algorithm
Z0(P1) - the number of zero to nonzero translations in the sequence
{P2,P3,P4,P5,P6,P7,P8,P9,P2}
NZ(P1) - the number of nonzero neighbours ofP1

Steps:
1. Scan through all the points of the image.
2. Calculate Z0(P1), NZ(P1), Z0(P2), Z0(P4), for all points.
3. DeleteP1 if the following conditions simultaneously satisfied:

2 <= NZ(P1) <= 6,
Z0(P1) = 1,

P2 * P4 * P8 = 0 or Z0(P2) 6= 1
P2 * P4 * P6 = 0 or Z0(P4) 6= 1

Figure 9 and Figure 10 are examples of the result of the skeletonization process
using the thinning algorithm.

3.2 Chaining

Navigation on the skeleton of the explored and unoccupied territory is possible and can
be more effective than the calculation of the cost matrix of the value iteration because
thinning results a data compression. Nevertheless it is advisable to use the skeleton as
a basis for further processing.

Skeleton of the explored region is a set of pixels, this structure can be transformed
to a graph. First of all, those points have to be determined where skeleton branches
meet. These pixels are the nodes, otherwise they are the crossing points of corridors.

6



Figure 9: Skeleton of a maze Figure 10: Skeleton of an office

After I have selected the nodes I cycle through the skeleton branches. This procedure
issues in chains, what are pixel sequences from node to node or from node to skeleton
end point ([10]). Algorithm 2 reveals the main structure of the procedure.

The first draft of the graph is calculated during the chaining process. Skeleton
nodes and end points take part in the graph as nodes. Graph edges connect those nodes
between which a chain exists.

During my investigation it turned out that the cited algorithm has two minor prob-
lems that, in special cases, corrupts the graph. On Figure 11 and Figure 12 chain
creation starts from nodes (marked by ’o’) and cycles through all the neighbours of the
node (marked by ’x’). Non-node elements are cancelled after they take part in a chain.

First problem rises in situations similar to the one shown on Figure 11. Pixel x
marked by 1 (x-1) is cancelled during the chain creation starting from x-2. In the next
step – since all the neighbours of nodes have to be processed – chain creation tries to
start from an already cancelled node: x-1.

Figure 11: Chaining problem 1 Figure 12: Chaining problem 2

Another problem is indicated on Figure 12. If the chain creation starts from x-2
then in the next step the search should turn to x-3 and chain the pixels downwards.

7



Algorithm 2 Excerpt of the chaining algorithm
while there are nodes left do

c = newChain()
while there are non-null neighours left do

if not found getNonNode4Neighbour(q) then
if not found getNode4Neighbour(q) then

if not found getNonNode8Neighbour(q) then
if found getNode8Neighbour(q) then

append(q,c)
else

endChain(c)
end
endChain(c)

else
append(q,c)

end
else

append(q,c)
endChain(c)

end
else

append(q,c)
end

end
end

However there is no explicit constraint in the algorithm to prevent the continuation
after x-2 in the direction of x-1, what is obviously wrong, since it leaves x-3 without a
connection to the node. After I corrected these mistakes the chaining algorithm created
the draft of the navigation graph.

3.3 Graph optimization

First version of the graph is not applicable to navigate because chains may ramble far
away from edges and if the robot simply follows the way of an edge it could meet with
obstacles.

To cope with this problem it is possible to recursively split the edge in question and
ensure that the new particles track the slues of the chain better. There are two different
algorithm-family for this approximation.

Wall and Danielsson calculate the algebraic surface between the edge and the chain
([13]). The iterative computation is performed by determining the sum of successive
triangles. If the size of the surface exceeds a certain threshold then splitting of the edge
is necessary.

Rosin and West’s algorithm measures the maximal distance between the edge and
the chain ([14]). This method splits the edge at its maximum deviation point recursively
until all the created new edges are acceptable approximations of the chain (Figure 13).

As a comparison of the methods [10] states that Wall and Danielsson can be imple-
mented very efficiently but on the other hand it is less accurate than Rosin and West’s
method. Additionally the second mentioned algorithm may split up edges into small

8



Figure 13: Splitting (taken from the slides of [10])

pieces near junctions.
Since I would like to use the topological graph for navigation at the end, it is im-

portant that edges do not cross or reach obstacles and walls. In other words fidelity of
the graph to the calculated chain is important so I have chosen and implemented Rosin
and West’s algorithm. The procedure is described in Algorithm 3.

Algorithm 3 Algorithm of Rosin and West
split_edge(graph,start_point,end_point) {

while chain is not finished do
get_act_point(chain,act_point)
h = height(start_point,end_point,act_point)
if h > LIMIT then

delete_edge_from_graph(graph,start_point,end_point)
add_node_to_graph(graph,act_point)
add_edge_to_graph(graph,start_point,act_point)
add_edge_to_graph(graph,act_point,end_point)
split_edge(start_point,act_point)
split_edge(act_point,end_point)

end
end

}

When the recursive splitting is finished pruning of edges is useful especially near
to unexplored regions. Otherwise, if the robot simply moves to an end node where
unexplored territory is nearby, then accidentaly it could run into a wall.

Figure 15 shows the optimized graph of Figure 14 after recursive edge splitting and
pruning.

3.4 Navigation

When creation of the graph of the explored and not occupied region is complete, the
robot has to determine the next exploration direction. Generally the robot is aimed to
sweep through all the reachable places of the environment. This is why those nodes of
the graph can be considered as goal nodes where unexplored region is close.

To localize these elements I performed a generalA∗ algorithm ([15]). This classical
algorithm finds the shortes path from the predefined start node of the graph to a goal
node. Start node of the graph in our case is the actual position of the robot. TheA∗

algorithm then calculates the shortest path from the actual position to a node where
exploration could be fruitful.

9



Figure 14: Graph after chaining Figure 15: Graph after optimization

Using the shortest path as a list to be processed, the robot can turn to the next node
of the graph in the list and move directly ahead while it does not reach the last node in
the list.

Besides the topological graph and theA∗ algorithm the final robot movement is
comprised another behaviour pattern as well. The role of this normal move module
is to stimulate the robot straight ahead ’en plaine air’, and it also ensures obstacle
avoidance motion in case of necessity. Since the generation of the topological graph
is time-consuming, this job is not done continuously. When the normal move module
does not explore efficiently, in other words the explored surface does not grow enough,
creation of the graph takes place and navigation is governed by theA∗ algorithm. This
alternating comportment incorporates the advantages of the two behaviour modules.

4 Results

During our research I created a topological navigation method based on occupancy grid
in the simulation environment of Webots. Using topological graph instead of value
iteration for the determination of exploration direction seems a beneficial modification.
On one hand it approximates better the nature of the navigation. On the other hand the
new algorithm performs better.

The two evolved robot controllers were tested in five different environments in
several experiments from various starting points. The environments were selected to
cover a wide range of possible situation that could arise during map-building.

The terrains were the following: an open area with some round obstacles, a radial
maze taken from [16] well-known in cognitive map researches (Figure 3), a maze (Fig-
ure 1), an office-like room (Figure 2) which was one of the fields of the Artificial Life
Creators Contest, and a labyrinth used at the 1994 AAAI autonomous mobile robot
competition (Figure 4, [7]).

10



The open area is 1m2, the AAAI maze is 1.85m2, while the others are 2.25m2.
Five attempts were performed in every field with both algorithm. The robot could
explore all the environments by the two methods.

In the small and easily solvable open area the robot spends 8 and 6.4 minutes on an
average in robot performance time using value iteration and topological graph respec-
tively. Radial maze does not cause any difficulties for the two programs, both solves it
in around 6 minutes on an average.

The most significant advance can be reached in the office environment: the 20
minutes time drops to 12.4 minutes. In the maze the time profit is smaller: the 22
minutes of value iteration is reduced to 14.5 minutes. The AAAI contest environment is
easier to solve than the maze, hence time frames of value iteration and graph navigation
are 14 and 11.7 respectively.

These results are collected in Table 1.

Table 1: Time comparison of the navigation methods

Value iteration (min) Topological graph
(min)

Open room 8 6.4
Radial 6.3 6
Office 20 12.4
Maze 22 14.5
AAAI contest 14 11.7

The acceleration between the two methods is a consequence of the smaller num-
ber of entities with which the algorithms have to deal (Table 2). There are between
11600 and 28900 pixels in the cost matrix of the value iteration, and the number of
graph nodes are between 20 and 120, depending on the size and the complexity of the
environment.

Table 2: Number of entities in the navigation methods

Value iteration (pixels) Topological graph
(graph nodes)

Open room 12800 50
Radial 11600 20
Office 28900 110
Maze 28900 120
AAAI contest 23700 105

11



5 Conclusions

This paper presents a method to build a topological graph for navigation based on oc-
cupancy grid. Besides the fact that already known algorithms are used, significantly
better accomplishments related to the pure occupancy grid method justify this naviga-
tion approach.

On one hand the number of manipulated entities – pixels for the value iteration, and
graph nodes for the topological navigation – differ in the two approaches. This gap is
more than two orders of magnitude, so the graph navigation dramatically reduces the
need for resources, especially the need for memory.

On the other hand better total exploration time can be achieved with the newer con-
trol procedure. Differences in the acceleration among various test fields follow from
the fact that the graph mostly helps in elongated parts of the territory and at the con-
nections of the large spaces. Open spaces are easily explorable by random obstacle
avoidance so the necessary time for open room and radial maze is not diminished es-
sentially. For the maze, the office, and the AAAI contest environment the effects are
easily recognizable, since time profit exceeds 20%.

6 Future work

There are quite many different ways of continuing the research. Some of them are
mentioned below:

• Testing the algorithms in real robot.

• Higher level task can be performed by the robot after successful exploration.

• Moving around in dynamic environments is a serious challenge, this extension
would make the problem more interesting.

• Using position estimation may make the robot fully automate.

• Introduction of new sensor types especially video cameras may enhance the oc-
cupancy grid creation and position estimation as well.

Acknowledgement
The author wishes to thank György Kampis for his useful suggestions, and András
Salamon for his valuable remarks.

References

[1] R. Szabó.Mobil robotok szimulációja. Eötvös Kiadó, 2001.

[2] O. Michel. Professional mobile robot simulation.International Journal of Ad-
vanced Robotic Systems, 1(1):39–42, 2004.

12



[3] R. Szabó. Navigation of simulated mobile robots in the webots environment.To
appear in Periodica Polytechnica, 2004.

[4] H. P. Moravec and A. Elfes. High resolution maps from wide angle sonar. In
Proceedings of the IEEE International Conference on Robotics and Automation,
(St. Louis, MO), pages 116–121, 1985.

[5] A. Elfes. Using occupancy grids for mobile robot perception and navigation.
Computer, 22(6):46–57, 1989.

[6] S. Thrun. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel, editors,
Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann, 2002.
to appear.

[7] S. Thrun. Learning metric-topological maps for indoor mobile robot navigation.
Artificial Intelligence, 99(1):21–71, 1998.

[8] J. Borenstein and L. Feng. Correction of systematic odometry errors in mobile
robots. In1995 IEEE International Conference on Robotics and Automation,
1995.

[9] R. Sutton and A. Barto.Reinforcement Learning: An Introduction. Bradford
Book, MIT Press, 1998.

[10] Karl Tombre, Christian Ah-Soon, Philippe Dosch, Gérald Masini, and Salvatore
Tabbone. Stable and robust vectorization: How to make the right choices.Lecture
Notes in Computer Science, 1941:3–17, 2000.

[11] G. Borgefors. Distance transformations in digital images.Computer Vision,
Graphics, and Image Processing, 34:344–371, 1986.

[12] A. K. Jain, editor.Fundamentals of Image Processing. Prentice-Hall,NJ, 1989.

[13] K. Wall and P.-E. Danielsson. A fast sequential method for polygonal approx-
imation of digitized curves.Computer Vision, Graphics and Image Processing,
28:220–227, 1984.

[14] P. L. Rosin and G. A. West. Segmentation of edges into lines and arcs.Image and
Vision Computing, 7(2):109–114, 1989.

[15] Futó Iván, editor.Mesterséges intelligencia. Aula Kiadó, 1999.

[16] V. Csányi.Etológia. Nemzeti Tankönyvkiadó Rt., 1994.

13


